R n \mathbf{R}^n R n and C n \mathbf{C}^n C n
Complex Numbers
We assume the root of − 1 -1 − 1 is i i i , (i 2 = − 1 i^2=-1 i 2 = − 1 ), which obeys the usual rules of arithmetic.
Definition
A complex number is an ordered pair ( a , b ) (a,b) ( a , b ) , where a , b ∈ R a, b \in R a , b ∈ R , but we will write this as a + b i a+bi a + bi .
The set of all complex numbers is denoted by C \mathbf{C} C :
C = { a + b i : a , b ∈ R } \mathbf{C} = \{a + bi : a, b \in \mathbf{R} \} C = { a + bi : a , b ∈ R }
Addition and Multiplication
Addition and multiplication on C \mathbf{C} C are defined by
( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i , (a+bi)+(c+di)=(a+c)+(b+d)i, ( a + bi ) + ( c + d i ) = ( a + c ) + ( b + d ) i ,
( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i ; (a+bi)(c+di)=(ac-bd)+(ad+bc)i; ( a + bi ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i ;
here a , b , c , d ∈ R a,b,c,d\in \mathbf{R} a , b , c , d ∈ R .
Properties of Complex Arithmetic
Commutativity
α + β = β + α \alpha + \beta = \beta + \alpha α + β = β + α and α β = β α \alpha\beta = \beta\alpha α β = β α for all α , β ∈ C \alpha, \beta \in \mathbf{C} α , β ∈ C ;
Associativity
( α + β ) + λ = α + ( β + λ ) (\alpha + \beta) + \lambda = \alpha + (\beta + \lambda) ( α + β ) + λ = α + ( β + λ ) and ( α β ) λ = α ( β λ ) (\alpha\beta) \lambda = \alpha (\beta\lambda) ( α β ) λ = α ( β λ ) for all α , β , λ ∈ C \alpha, \beta, \lambda \in \mathbf{C} α , β , λ ∈ C ;
Identities
λ + 0 = λ \lambda + 0 = \lambda λ + 0 = λ and λ 1 = λ \lambda 1 = \lambda λ 1 = λ for all λ ∈ C \lambda \in \mathbf{C} λ ∈ C ;
Additive Inverse
For every α ∈ C \alpha \in \mathbf{C} α ∈ C , there exists a unique β ∈ C \beta \in \mathbf{C} β ∈ C such that α + β = 0 \alpha + \beta = 0 α + β = 0 ;
Multiplicative Inverse
For every α ∈ C \alpha \in \mathbf{C} α ∈ C with α ≠ 0 \alpha \neq 0 α = 0 , there exists a unique β ∈ C \beta \in \mathbf{C} β ∈ C such that α β = 1 \alpha\beta = 1 α β = 1 ;
Distributive Property
λ ( α + β ) = λ α + λ β \lambda (\alpha + \beta) = \lambda\alpha + \lambda\beta λ ( α + β ) = λ α + λ β for all α , β , λ ∈ C \alpha, \beta, \lambda \in \mathbf{C} α , β , λ ∈ C .
Let α , β ∈ C \alpha, \beta \in \mathbf{C} α , β ∈ C .
Let − α -\alpha − α denote the additive inverse of α \alpha α . Thus − α -\alpha − α is the unique complex number such that
α + ( − α ) = 0. \alpha + (-\alpha) = 0. α + ( − α ) = 0.
Subtraction on C \mathbf{C} C is defined by
β − α = β + ( − α ) . \beta - \alpha = \beta + (-\alpha). β − α = β + ( − α ) .
For α ≠ 0 \alpha \neq 0 α = 0 , let 1 α \dfrac{1}{\alpha} α 1 denote the multiplicative inverse of α \alpha α . Thus 1 α \dfrac{1}{\alpha} α 1 is the unique complex number such that
α ( 1 α ) = 1. \alpha(\dfrac{1}{\alpha}) = 1. α ( α 1 ) = 1.
Division on C \mathbf{C} C is defined by
β α = β ( 1 α ) . \dfrac{\beta}{\alpha} = \beta (\dfrac{1}{\alpha}). α β = β ( α 1 ) .
F n \mathbf{F}^n F n
In these documents, F \mathbf{F} F stands for either R \mathbf{R} R or C \mathbf{C} C . The letter F \mathbf{F} F is used because R \mathbf{R} R and C \mathbf{C} C are examples of fields . Elements of F \mathbf{F} F are called scalars , as opposed to a vectors.
Definition
For α ∈ F \alpha \in \mathbf{F} α ∈ F and m m m a positive integer, we define α m \alpha^m α m to denote the product of α \alpha α with itself m m m times:
α m = α ⋯ α ⏟ m times . \alpha^m = \underbrace{\alpha \cdots \alpha}_{m \; \text{times}}. α m = m times α ⋯ α .
Clearly ( α m ) n = α m n (\alpha^m)^n = \alpha^{mn} ( α m ) n = α mn and ( α β ) m = α m β m (\alpha\beta)^m = \alpha^m \beta^m ( α β ) m = α m β m for all α , β ∈ F \alpha, \beta \in \mathbf{F} α , β ∈ F and all positive integers m , n m, n m , n .
F n \mathbf{F}^n F n is the set of all lists of length n n n of elements of F \mathbf{F} F :
F n = { ( x 1 , … , x 2 ) : x j ∈ F for j = 1 , … , n } . \mathbf{F}^n = \{(x_1, \dots, x_2) : x_j \in \mathbf{F} \; \text{for} \; j = 1, \dots, n\}. F n = {( x 1 , … , x 2 ) : x j ∈ F for j = 1 , … , n } . x j x_j x j is the j t h j^{th} j t h coordinate of ( x 1 , … , x n ) (x_1, \dots, x_n) ( x 1 , … , x n ) .
Addition and Scalar Multiplication
Addition in F \mathbf{F} F is defined by adding corresponding coordinates:
( x 1 , … , x n ) + ( y 1 , … , y n ) = ( x 1 + y 1 , … , x n + y n ) . (x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n). ( x 1 , … , x n ) + ( y 1 , … , y n ) = ( x 1 + y 1 , … , x n + y n ) .
Scalar Multiplication The product of a number λ \lambda λ and a vector in F n \mathbf{F}^n F n is computed by multiplying each coordinate of the vector by λ \lambda λ :
λ ( x 1 , … , x n ) = ( λ x 1 , … , λ x n ) \lambda (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n) λ ( x 1 , … , x n ) = ( λ x 1 , … , λ x n )
here λ ∈ F \lambda \in \mathbf{F} λ ∈ F and ( x 1 , … , x n ) ∈ F n ) (x_1,\dots,x_n) \in \mathbf{F}^n) ( x 1 , … , x n ) ∈ F n ) .
Properties of F n \mathbf{F}^n F n
Commutativity of Addition in F n \mathbf{F}^n F n If x , y ∈ F n x, y \in \mathbf{F}^n x , y ∈ F n , then x + y = y + x x + y = y + x x + y = y + x .
Let 0 0 0 denote the list of length n n n whose coordinates are all 0 0 0 :
0 = ( 0 , … , 0 ) . 0 = (0, \dots, 0). 0 = ( 0 , … , 0 ) .
For x ∈ F n x \in \mathbf{F}^n x ∈ F n , the additive inverse of x x x , denoted − x -x − x , is the vector − x ∈ F n -x \in \mathbf{F}^n − x ∈ F n such that
x + ( − x ) = 0. x + (-x) = 0. x + ( − x ) = 0.
In other words, if x = ( x 1 , … , x n ) x = (x_1, \dots, x_n) x = ( x 1 , … , x n ) , then − x = ( − x 1 , … , − x n -x = (-x_1, \dots, -x_n − x = ( − x 1 , … , − x n .
A field is a set of containing at least two distinct elements called 0 and 1, along with operations of addition and multiplication satisfying all the properties list here . Thus, R \mathbf{R} R and C \mathbf{C} C are fields, as is the set of rational numbers along with the usual operations of addition and multiplication. Another example of a field is the set { 0 , 1 } \{ 0, 1 \} { 0 , 1 } with the usual operations of addition and multiplication except that 1 + 1 = 0 1 + 1 = 0 1 + 1 = 0 .
Vector Space
Definition
An addition on a set V V V is a function that assigns an element u + v ∈ V u + v \in V u + v ∈ V to each pair of elements u , v ∈ V u, v \in V u , v ∈ V .
A scalar multiplication on a set V V V is a function that assigns an element λ v ∈ V \lambda v \in V λ v ∈ V to each λ ∈ F \lambda \in \mathbf{F} λ ∈ F and each v ∈ V v \in V v ∈ V .
A vector space is a set V V V along with an addition on V V V and a scalar multiplication on V V V such that the following properties hold:
Commutativity
u + v = v + u u + v = v + u u + v = v + u for all u , v ∈ V u, v \in V u , v ∈ V ;
Associativity
( u + v ) + w = u + ( v + w ) (u + v) + w = u + (v + w) ( u + v ) + w = u + ( v + w ) and ( a b ) v = a ( b v ) (ab)v = a(bv) ( ab ) v = a ( b v ) for all u , v , w ∈ V u, v, w \in V u , v , w ∈ V and all a , b ∈ F a, b \in \mathbf{F} a , b ∈ F ;
Additive Identity
There exists an element 0 ∈ V 0 \in V 0 ∈ V such that v + 0 = v v + 0 = v v + 0 = v for all v ∈ V v \in V v ∈ V ;
Addictive Inverse
For every v ∈ V v \in V v ∈ V , there exists w ∈ V w \in V w ∈ V such that v + w = 0 v + w = 0 v + w = 0 ;
Multiplicative Identity
1 v = v 1v = v 1 v = v for all v ∈ V v \in V v ∈ V ;
Distributive Properties
a ( u + v ) = a u + a v a(u + v) = au + av a ( u + v ) = a u + a v and ( a + b ) v = a v + b v (a + b) v = av + bv ( a + b ) v = a v + b v for all a , b ∈ F a, b \in \mathbf{F} a , b ∈ F and all u , v ∈ V u, v \in V u , v ∈ V .
The simplest vector space is { 0 } \{ 0 \} { 0 } , which contains only one point.
F ∞ \mathbf{F}^\infty F ∞ is defined to be the set of all sequences of elements of F \mathbf{F} F :
F ∞ = { ( x 1 , x 2 , … ) : x j ∈ F for j = 1 , 2 , … } \mathbf{F}^\infty = \{ (x_1, x_2, \dots) : x_j \in \mathbf{F} \; \text{for} \; j = 1,2,\dots \} F ∞ = {( x 1 , x 2 , … ) : x j ∈ F for j = 1 , 2 , … }
Elements of a vector space are called vectors or points .
A vector space over R \mathbf{R} R , that is R n \mathbf{R}^n R n , is called real vector space ; and a vector space over C \mathbf{C} C , that is C n \mathbf{C}^n C n , is called a complex vector space .
If S S S is a set, then F S \mathbf{F}^S F S denotes the set of functions from S S S to F \mathbf{F} F .
For f , g ∈ F S f, g \in \mathbf{F}^S f , g ∈ F S , the sum f + g ∈ F S f + g \in \mathbf{F}^S f + g ∈ F S is the function defined by
( f + g ) ( x ) = f ( x ) + g ( x ) (f + g)(x) = f(x) + g(x) ( f + g ) ( x ) = f ( x ) + g ( x ) for all x ∈ S x \in S x ∈ S .
For λ ∈ F \lambda \in \mathbf{F} λ ∈ F and f ∈ F S f \in \mathbf{F}^S f ∈ F S , the product λ f ∈ F S \lambda f \in \mathbf{F}^S λ f ∈ F S is the function defined by
( λ f ) ( x ) = λ f ( x ) (\lambda f)(x) = \lambda f(x) ( λ f ) ( x ) = λ f ( x ) for all x ∈ S x \in S x ∈ S .